
RANDOMIZED SKETCHING ALGORITHMS FOR LOW-MEMORY DYNAMIC1

OPTIMIZATION∗2

RAMCHANDRAN MUTHUKUMAR† , DREW P. KOURI‡ , AND MADELEINE UDELL†3

Abstract. This paper develops a novel limited-memory method to solve dynamic optimization problems. The memory4
requirements for such problems often present a major obstacle, particularly for problems with PDE constraints such as optimal5
flow control, full waveform inversion, and optical tomography. In these problems, PDE constraints uniquely determine the state6
of a physical system for a given control; the goal is to find the value of the control that minimizes an objective. While the7
control is often low dimensional, the state is typically more expensive to store.8

This paper suggests using randomized matrix approximation to compress the state as it is generated and shows how to9
use the compressed state to reliably solve the original dynamic optimization problem. Concretely, the compressed state is10
used to compute approximate gradients and to apply the Hessian to vectors. The approximation error in these quantities is11
controlled by the target rank of the sketch. This approximate first- and second-order information can readily be used in any12
optimization algorithm. As an example, we develop a sketched trust-region method that adaptively chooses the target rank13
using a posteriori error information and provably converges to a stationary point of the original problem. Numerical experiments14
with the sketched trust-region method show promising performance on challenging problems such as the optimal control of an15
advection-reaction-diffusion equation and the optimal control of fluid flow past a cylinder.16

Key words. PDE-constrained optimization; matrix approximation; randomized algorithm; single-pass algorithm; sketch-17
ing; adaptivity; trust-region method; flow control; Navier–Stokes equations; adjoint equation18

AMS subject classifications. 49M37, 49L20, 68W20, 90C30, 90C39, 93C2019

1. Introduction. In this paper, we introduce novel low-memory methods to solve discrete-time dy-20

namic optimization problems based on randomized matrix sketching. Such problems arise in many practical21

applications including full waveform inversion [21, 28, 33], optimal flow control [13, 23], financial engineering22

[17] and optical tomography [2, 18] to name a few. Let M be the dimension of the state space and m be23

the dimension of the control space. For many practical applications M � m. We consider the discrete-time24

dynamic optimization problem25

(1.1)
minimize

un∈RM , zn∈Rm

N∑
n=1

fn(un−1,un, zn)

subject to cn(un−1,un, zn) = 0, n = 1, . . . , N,

26

where zn ∈ RM , un ∈ Rm are the control actions and system states at the nth time step respectively,27

u0 ∈ RM is the provided initial state of the system, fn : RM × RM × Rm → R is a “cost” or “objective”28

associated with the nth state and control, and cn : RM × RM × Rm → RM is a constraint function that29

advances the state from un−1 into un. One major application of Problem (1.1) is to optimize (a discretized30

version of) a continuous-time dynamical system. In this case, the form of cn presented above corresponds to31

single-step time integration schemes. Other time stepping methods can also be handled with the approach32

described here. Additionally, our approach can handle dynamic optimization problems with static controls33

including, e.g., initial conditions, material parameters, and shape or topological designs. However, for34

simplicity we focus on problems of the form (1.1).35

1.1. Memory versus computation: trade-offs. Memory limits often constrain numerical algorithms36

for (1.1). For example, suppose the objective and constraints are twice differentiable. To solve (1.1) using37

a traditional sequential quadratic programming algorithm, we must store the entire state trajectory {un},38

the Lagrange multipliers associated with each constraint function in (1.1), and the control trajectory {zn}:39

in total, a memory requirement of N(2M + m) floating point numbers. For example, discretizations of full40

waveform inversion problems for petroleum exploration regularly result in state vectors of size M = 64 billion41

∗Submitted to the editors [DATE].
†Department of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853

(rm949@cornell.edu, udell@cornell.edu).
‡Optimization and Uncertainty Quantification, Sandia National Laboratories, Albuquerque, NM 87185

(dpkouri@sandia.gov).

1

This manuscript is for review purposes only.

mailto:rm949@cornell.edu
mailto:udell@cornell.edu
mailto:dpkouri@sandia.gov

with the number of time steps exceeding N = 400, 000 [22]. In view of the onerous memory requirements of42

straightforward algorithms, algorithm designers must make hard choices to reduce the fidelity of the model43

or to repeat computation.44

One can reduce the storage and computational complexity — at the cost of accuracy — using coarse45

spatial and temporal grids to model the problem. A more ambitious approach then coarsening is to solve46

(1.1) using a reduced-order model (ROM) [1, 8, 16]. However, ROMs are often tailored for specific dynamical47

systems and demand significant domain expertise. Moreover, ROMs can be difficult to implement in practice,48

requiring significant and often invasive modification of the simulation software. Näıvely implemented, ROMs49

are also a poor fit for optimization. For example, proper orthogonal decomposition ROMs are constructed50

using snapshots of the state trajectory {un}, which depend on the current control trajectory {zn}. Therefore,51

as the control changes during optimization, the approximation quality of the ROM degrades. Adaptive ROM52

generation for optimization is an active research topic [9, 36].53

An alternative approach substitutes computation for memory. Suppose the dynamic constraint in (1.1)54

uniquely determines the state given the control, and form the equivalent reduced optimization problem by55

eliminating the state “nuisance variable”. The optimization variable in this approach is simply the control56

{zn}: Nm floating point numbers. However, evaluating the objective function requires solving the dynamic57

constraint. Worse, evaluating the gradient of the objective function requires the solution of the backward-58

in-time adjoint equation [15]: to solve it, we must traverse the state trajectory backward, from the end to59

the beginning. Unfortunately, the state must generally be computed forward in time.60

Checkpointing methods perform this backward pass without storing the full state [3, 10, 25, 32]. Instead,61

they store judiciously chosen snapshots of the state variables un in memory or to hard disk. The state is62

then recomputed from these checkpoints to solve the adjoint equation. This procedure results in lower63

memory requirements, but drastically increases the cost of computing gradient information. For example,64

if we can store at most k state vectors in memory (i.e., kM floating point numbers) and we solve the65

dynamic optimization problem (1.1) using the checkpointing strategy described in [10] with k checkpoints,66

then Proposition 1 of [10] guarantees that the minimum number of additional state time steps required to67

perform the backward pass of the adjoint equation is68

w(N, k) := τN − β(k + 1, τ − 1) where β(s, t) :=

(
s+ t

s

)
69

and τ is the unique integer satisfying β(k, τ −1) < N ≤ β(k, τ). This cost is compounded when higher-order70

derivatives are required.71

1.2. Randomized sketching for dynamic optimization. In contrast to checkpointing methods,72

our sketching methods can achieve O(N) computation with O(N +M) storage, where the constant hidden73

by the big-O notation depends on the rank of the state matrix. Indeed, our methods solve the state equation74

only once at each iterate. The sketching method is simple and easy to integrate into existing codes: 1)75

compute the sketch while solving the state equation by forming a random projection, 2) reconstruct the76

approximate state via simple linear algebra, and 3) use the low-rank approximation in place of the state77

throughout the remainder of the computation; for example, to solve the adjoint equation and compute78

an approximate gradient. Under standard assumptions, we can quantify the effect of these approximate79

gradients on the quality of the approximate solution to the dynamic optimization problem (1.1). We also80

develop a trust-region algorithm to solve (1.1) that ensures convergence by adaptively choosing the rank.81

1.3. Outline. We first introduce notation and describe the problem formulation. We then introduce a82

sketching methods for matrix approximation and analyze the error committed when solving (1.1) with a fixed-83

rank sketch. Subsequently, we introduce an adaptive-rank trust-region algorithm and discuss its convergence.84

We verify our assumptions for a class of optimal control problems constrained by linear parabolic partial85

differential equations (PDE). We provide numerical results for this class of problems as well as for a class of86

flow control problems for which the assumptions have not been verified.87

2. Problem formulation. To begin, we introduce notation for the dynamic optimization problem.88

We consider the control vectors zn and the state vectors un to be column vectors and collect the control and89

2

This manuscript is for review purposes only.

state trajectories into the stacked column vectors90

Z =

 z1

...
zN

 , zn ∈ Rm ∀ n = 1, . . . , N, and U =

 u1

...
uN

 , un ∈ RM ∀ n = 1, . . . , N.91

We denote the feasible sets of control and state vectors by Z := RmN and U := RMN . Moreover, we consider92

the family of coordinate projections pn : RM × Rm → RM × RM × Rm defined by93

p1(U,Z) := (u0,u1, z1) and pn(U,Z) := (un−1,un, zn), n = 2, . . . , N,94

where the initial state u0 is given. Other choices of the projection mappings {pn} result in different orderings95

of the trajectory. These model, e.g., delays in the dynamics or different time stepping schemes. Throughout96

the paper, all norms ‖ · ‖ are Euclidean (for matrices, Frobenius) unless stated otherwise. For later results,97

we will require the weighted norms ‖v‖2A = v>Av for v ∈ R` where A ∈ R`×` is a symmetric positive98

definite matrix. In addition, we denote the singular values of a matrix B ∈ RM×N by σmin(B) = σ1(B) ≤99

· · · ≤ σmin(M,N)(B) = σmax(B).100

Using this notation, we can represent the dynamic constraint and objective as the functions101

c(U,Z) :=

 c1 ◦ p1

...
cN ◦ pN

 (U,Z) and f(U,Z) :=

N∑
n=1

fn ◦ pn(U,Z),102

where c : U× Z→ U and f : U× Z→ R and we can rewrite the dynamic optimization problem (1.1) as103

(2.1)
minimize
U∈U, Z∈Z

f(U,Z)

subject to c(U,Z) = 0.
104

2.1. Assumptions and the reduced problem. Throughout this paper, we will assume that f and c105

are continuously differentiable on U×Z. In general, we denote by di the partial derivative of a function with106

respect to its ith argument. We assume that the state Jacobian of the constraint, d1c(U,Z) has a bounded107

inverse for all controls Z ∈ Z and that there exists a control-to-state map S : Z→ U such that for any control108

Z ∈ Z, Ū := S(Z) is the unique state trajectory that satisfies the dynamic constraint,109

c(Ū,Z) = 0.110

Note that the unique state trajectory Ū = S(Z) has the form111

S(Z) :=

S1(u0, z1)

S2(S1(u0, z1), z2)
...

SN (SN−1(. . . , zN−1), zN)

112

where ūn = Sn(ūn−1, zn) ∈ RM denotes the unique solution to113

cn(ūn−1, ūn, zn) = 0 ∀ n = 1, . . . , N.114

Under these assumptions, the Implicit Function Theorem (cf. [15, Th. 1.41]) ensures that the operators Sn115

and S are continuously differentiable. In addition, if c has continuous `th-order derivatives for ` ∈ N, then116

Sn and S are `th-order continuously differentiable. Using the control-to-state map S, we can reformulate117

(2.1) as the reduced dynamic optimization problem118

(2.2) minimize
Z∈Z

{F (Z) := f(S(Z),Z)}.119

Our goal is to solve the reduced dynamic optimization problem (2.2) efficiently. This reduced formulation is120

helpful when the problem size, and therefore the memory required to store the state, is large.121

3

This manuscript is for review purposes only.

2.2. Gradient computation and adjoints. We focus on derivative-based optimization approaches122

to solving the dynamic optimization problem (2.2). These require computing first-order and (if possible)123

second-order derivative information. To compute the gradient of the reduced objective function F , we employ124

the adjoint approach [15], which results from an application of the chain rule to the implicitly defined reduced125

objective function F . In particular, the variation of F in the direction V ∈ Z is given by126

〈∇F (Z),V〉Z = 〈d1f(S(Z),Z), S′(Z)V〉U + 〈d2f(S(Z),Z),V〉Z,127

= 〈S′(Z)∗d1f(S(Z),Z) + d2f(S(Z),Z),V〉Z,128129

where S′(Z) denotes the derivative of the control-to-state map S at Z and S′(Z)∗ its adjoint. Here, 〈·, ·〉Z and130

〈·, ·〉U denote inner products on Z and U, respectively. The Implicit Function Theorem ensure that S′(Z)V131

satisfies the linear system of equations132

(2.3) d1c(S(Z),Z)S′(Z)V + d2c(S(Z),Z)V = 0.133

By the assumption that the state Jacobian of the constraint, d1c(S(Z),Z), has a bounded inverse for all134

control Z ∈ Z, we have that (2.3) has a unique solution given by135

S′(Z) = −(d1c(S(Z),Z))−1d2c(S(Z),Z).136

Therefore, the adjoint of the derivative of the control-to-state map is given by137

S′(Z)∗ = −(d2c(S(Z),Z))∗(d1c(S(Z),Z))−∗.138

Substituting this expression into (2.2) yields the gradient139

∇F (Z) = (d2c(S(Z),Z))∗Λ̄ + d2f(S(Z),Z),140

where the adjoint, Λ̄ = Λ(Z) ∈ U, is the unique trajectory that solves the adjoint equation:141

(2.4) (d1c(S(Z),Z))∗Λ̄ = −d1f(S(Z),Z).142

This discussion gives rise to Algorithm 2.1 for computing gradients of the reduced objective function F .143

Algorithm 2.1 Compute gradient using adjoints.

Input: Control Z
Output: Gradient of reduced objective function ∇F (Z)

1: function Gradient(Z)
2: Solve the state equation, c(U,Z) = 0 and denote the solution Ū
3: Solve the adjoint equation, (d1c(Ū,Z))∗Λ = −d1f(Ū,Z) and denote the solution Λ̄
4: Compute the gradient as ∇F (Z) = d2f(Ū,Z) + (d2c(Ū,Z))∗Λ̄
5: return ∇F (Z)

Algorithm 2.1 hides the dynamic nature of the state and adjoint computations. In fact, we compute Ū144

forward in time starting from u1 to uN . In contrast, the adjoint equation is computed backward in time.145

To see this, express the adjoint equation in terms of the N components fn and cn:146

0 = d1f(S(Z),Z) + (d1c(S(Z),Z))∗Λ̄ =

N∑
n=1

d1(fn ◦ pn)(S(Z),Z) + (d1(cn ◦ pn)(S(Z),Z))∗λ̄n.147

148

We can calculate partial derivatives of cn ◦ pn and fn ◦ pn using the chain rule. To this end, we have that149

d1(cn ◦ pn)(U,Z) =

0
...

∇1cn(un−1,un, zn)
∇2cn(un−1,un, zn)

...
0

and d1(fn ◦ pn)(U,Z) =

0
...

∇1fn(un−1,un, zn)
∇2fn(un−1,un, zn)

...
0

.150

4

This manuscript is for review purposes only.

Hence, the adjoint equation reduces to the following system of equations for n = 1, . . . , N ,151

(d2cN (ūN−1, ūN , zN))∗λN =− d2fN (ūN−1, ūN , zN),152

(d2cn(ūn−1, ūn, zn))∗λn =− d2fn(ūn−1, ūn, zn)− d1fn+1(ūn, ūn+1, zn+1)153

− d1cn+1(ūn, ūn+1, zn+1)∗λn+1,154155

where ūn = Sn(ūn−1, zn) for n = 1, . . . , N . Here, information required for the solve flows backward in156

time from λ̄N to λ̄1: in general, computing λ̄n requires the state vectors ūn−1, ūn and ūn+1. The most157

straightforward computational approach is to solve the state equation and store the full state trajectory158

before computing the adjoint. The adjoint vectors λ̄n are used to form the gradient vector gn at the nth159

time step as160

gn = d3fn(un−1,un, zn) + (d3cn(un−1,un, zn))∗λn.161

The data dependency of the gradient computation is shown in Figure 1 for N = 5. The dependencies of162

the green nodes (state) flow forward, while the dependencies of the red nodes (adjoint) flow backward. The163

target nodes of the computation are the gradient vectors gn. Both the state Ū and adjoint Λ̄ are intermediate

Figure 1: Data dependency between computations.

u1 u2 u3 u4 u5

λ1 λ2 λ3 λ4 λ5

g1 g2 g3 g4 g5

164

variables used to compute the gradient ∇F (Z), and both require MN storage. The control requires only165

mN storage, which is often much smaller in practical applications, i.e., M � m.166

3. Low-memory matrix approximation. Our method forms a low-memory approximation to the167

state matrix in order to solve the dynamic optimization problem without storing or recomputing the state168

matrix. In this section, we describe this approximation in detail. Given a fixed storage budget, in a single169

pass column-by-column over the matrix, the method collects information about the matrix from which the170

matrix can be accurately reconstructed. This information is called a sketch of the matrix. The approach171

we adopt in this paper uses a random projection of the matrix to compute the sketch. This approach has172

been studied extensively in the numerical analysis and theoretical computer science communities, and many173

different methods are available [5, 6, 12, 24, 29, 30, 31, 34, 35]. When the state space itself has tensor174

product structure, a tensor sketch that respects that structure can further reduce memory requirements [26].175

Consider a matrix A ∈ RM×N and a target rank parameter r. Each of these methods produces a176

low-rank matrix approximation Â that is (in expectation) not much farther from A than the best rank-r177

approximation, using O(r(M + N)) storage. For concreteness (and for use in our numerical experiments),178

we describe the method developed in [31].179

Define the sketch parameters r ≤ k ≤ s. The quality of the approximation, and also the storage required180

for the sketch, increases with these parameters. In this paper, we choose k := 2r + 1 and s := 2k + 1, and181

adjust the target rank parameter r to obtain satisfactory performance. To define the sketch, fix four random182

linear dimension reduction maps (DRMs) with iid standard normal entries:183

Υ ∈ Rk×M and Ω ∈ Rk×N ;

Φ ∈ Rs×M and Ψ ∈ Rs×N .
184

5

This manuscript is for review purposes only.

Note that other random ensembles work similarly; see [31]. The sketch of the target matrix A consists of185

X := ΥA ∈ Rk×N , the range sketch;186

Y := AΩ∗ ∈ RM×k, the co-range sketch;187

Z := ΦAΨ∗ ∈ Rs×s, the core sketch.188189

Roughly speaking, the range sketch X captures the row space (top left singular vectors) of A; the co-range190

sketch Y captures the column space (top right singular vectors); and the core sketch Z captures their191

interactions (singular values). Linearity of the sketch allows us to compute it without storing the full matrix192

A. Suppose A = [a1 · · ·aN] is presented column by column. Then, we can compute the range sketch193

X = X(N) by the recursion194

(3.1) X(0) = 0, X(i) = X(i−1) + Υaie
>
i , i = 1, . . . , N,195

where ei is the ith unit vector, and similarly for the co-range sketch Y and core sketch Z.196

Sketch object. We use {A}r to denote an object of the sketch class, which contains the sketch parameters197

k, s, the dimension reduction maps Υ,Ω,Φ,Ψ, and the range, co-range, and core sketches X,Y,Z.198

Storage. The sketch matrices X, Y, and Z can be stored using k(M +N) + s2 floating point numbers.199

Hence the memory required to store a sketch object with target rank parameter r is O(r(M+N)+r2). When200

storage is limited, the DRMs can be regenerated on the fly from a random seed or generated from a random201

ensemble with lower storage requirements [26, 27], so we omit the DRMs from our storage calculation.202

3.1. Reconstruction. We can reconstruct a low-rank approximation from the sketch. To reconstruct,203

compute the thin QR factorizations of X∗ and Y,204

(3.2)
X∗ =: PR1 where P ∈ RN×k;

Y =: QR2 where Q ∈ RM×k.
205

Use the core sketch Z to compute a core approximation by solving two small least-squares problems206

(3.3) C := (ΦQ)†Z((ΨP)†)∗ ∈ Rk×k.207

Then compute a rank-k approximation of the target matrix A as208

(3.4) {{A}}r := QCP∗.209

This approximation can be truncated to rank r by replacing C ∈ Rs×s by its best rank-r approximation.210

For use in the dynamic optimization problem, after reconstruction we store the low-rank factors of the211

approximation, Q ∈ RM×k and W = CP∗ ∈ Rk×N , in the sketch object {A}r. (To reduce storage further,212

one can overwrite X and Y with Q and W). From these, we can reconstruct the jth column (the state at the213

jth time step) as needed, via {{A}}r[:, j] = QW[:, j]. Each of these operations uses storage proportional to214

k(M +N), so the total storage complexity to approximate A ∈ RM×N (in factored form) is O(k(M +N)).215

We summarize the sketch class and its methods in Algorithm A.1 in Appendix A.216

Sketching provides a tractable way to control the relative error in approximation by varying the target217

rank parameter r, since the error tends to zero as r increases. We state the reconstruction error bound estab-218

lished in [31] and a useful lemma that shows any fixed error tolerance can be achieved by an approximation219

with sufficiently large r. For use in these results, the jth tail energy of a matrix A is defined by220

τj(A) := min
Rank(B)<j

‖A−B‖ =

(∑
i≥j

σ2
i (A)

) 1
2

.221

222

Theorem 3.1 (Reconstruction Error [31]). Let A ∈ RM×N be a matrix and let r be the target rank223

parameter. Choose sketch parameters k = 2r+ 1 and s = 2k+ 1. Compute range, co-range and core sketches224

(X,Y,Z) according to (3.1). The low-rank approximation {{A}}r computed in (3.2)-(3.4) satisfies225

E ‖A− {{A}}r‖ ≤
√

6 · τr+1(A).226

6

This manuscript is for review purposes only.

This result shows that the rank-k approximation to A computed by sketching is only a constant factor227

farther from A than the best rank-r approximation. It is also possible to obtain an unbiased estimate of the228

error in approximation, ‖A− {{A}}r‖, in one streaming pass over the target matrix A; see [31] for details.229

In the following sections, we state several bounds on the expected error of various quantities. Notice that230

these all yield high probability bounds using the following result.231

Lemma 3.2. For any A ∈ RM×N and for all δ, ε > 0, there exists a rank r(δ, ε) such that for any232

r ≥ r(δ, ε), the sketching approximation error is bounded by ε with probability δ:233

Prob(‖A− {{A}}r‖ ≥ ε) ≤ δ.234

Proof. Observe that for any target matrix A ∈ RM×N , τ1(A) ≥ . . . ≥ τmin{M,N}(A) = 0. Therefore235

for any δ and ε, there is some rank r such that E ‖A− {{A}}r‖ ≤ δε. Combining this fact with Markov’s236

inequality yields the desired bound.237

4. Randomized sketching for dynamic optimization. This section presents our limited-memory238

algorithm to solve the dynamic optimization problem (2.2). Any first-order optimization method relies on239

the gradient of the objective function, so we begin with a discussion of how to compute a limited-memory240

approximate gradient in Subsection 4.1. We also discuss how the same approach can be extended to apply241

the Hessian to a vector using limited memory. This enables usage of second-order methods. We next242

quantify the error in the approximate gradient. To quantify this error, we rely on regularity assumptions243

detailed in Subsection 4.2. This analysis undergirds our results on the optimization algorithms presented244

in the next two subsections. In Subsection 4.3, we present our first approach that considers computing the245

gradient using a fixed-rank sketch. This method has the advantage that it uses a fixed storage budget.246

However, for this method to work well, the state corresponding to any control must be well approximated247

by a fixed-rank sketch whose rank is known in advance. In Subsection 4.4, we present our second approach,248

an adaptive method that updates the sketch rank to control the error in the gradient. We obtain a provably249

convergent optimization method by using this adaptive approach to compute the gradient within a trust-250

region algorithm. Unlike the fixed-rank method this approach does not require a rank estimate a priori.251

However, this approach has the disadvantage that the storage budget required is dictated by the progress of252

the optimization algorithm and is not known a priori.253

4.1. Computing first- and second-order information with limited memory. To compute the254

gradient and to apply the Hessian with limited memory, we can sketch the state while solving the state255

equation, c(U,Z) = 0. Upon solving the adjoint equation, we reconstruct from the sketch to compute an256

approximate state. This allows us to compute an approximate gradient based on the approximate state.257

4.1.1. Solving the state equation. Fix the target rank parameter r. To set notation, denote258

by mat(U,M,N) the state vectors at different time steps un collected into a matrix, mat(U,M,N) :=259

[u1 · · ·uN] ∈ RM×N . With some abuse of notation, we define the approximate state to be the low-rank260

approximation reconstructed via sketching the state matrix {{U}}r := {{mat(U,M,N)}}r. Since the state261

matrix is computed forward in time starting from u1 to uN , we can simultaneously update the sketch262

matrices X,Y and Z using the ColumnUpdate! function of the sketch class Algorithm A.1. The reduced263

objective function can be simultaneously exactly evaluated in this procedure. This method is presented as264

Algorithm 4.1. Here the notation Function!() denotes a method that can modify its arguments or associated265

class. In the context of the approximate state, we shall refer to c(U,Z) as the state residual.266

4.1.2. Computing an approximate gradient from the sketched state. Recall that variables267

with bars denote exact solutions to the state or adjoint equation, while variables with hats are approximate268

solutions: fixing the control Z, the true adjoint Λ̄ solves the adjoint equation (2.4) at the true state Ū, while269

the approximate adjoint Λ̂r solves the adjoint equation (2.4) at the sketched state Ûr = {{Ū}}r:270

(d1c(Ûr,Z))∗Λ̂r = −d1f(Ûr,Z).271

By analogy with the state residual c(U,Z), define the adjoint residual at (Λ,U,Z) ∈ U× U× Z as272

h(Λ,U,Z) := d1f(U,Z) + (d1c(U,Z))∗Λ.273

7

This manuscript is for review purposes only.

Algorithm 4.1 Solve state equation and compute exact objective function value.

Input: A control iterate Z ∈ Rm×N , sketch object {U}r for state and sketch rank parameter r ≤ min{M,N}
Output: Updated sketch object {U}r and reduced objective function value F (Z)
Storage: O(r(M +N) +mN)

1: function SolveState!({U}r, Z)
2: (uold, F)← (u0, 0)
3: for n← 1 to N do
4: Solve cn(uold,unew, zn) = 0 for unew Solve nth state equation
5: F ← F + fn(uold,unew, zn) Update objective function value
6: {U}r.ColumnUpdate!(unew, n) Update sketch with nth column of state
7: uold ← unew

8: return F

The adjoint residual evaluated at arguments (Λ,U,Z) is zero when Λ solves the adjoint equation (2.4) for274

any control Z and state U. Consider in particular the special cases of this equality using the true state275

h(Λ̄, Ū,Z) = 0 and using the sketched state h(Λ̂r, Ûr,Z) = 0. For arbitrary Λ, U and Z, we define the map276

g : U× U× Z→ Z as277

g(Λ,U,Z) := d2f(U,Z) + (d2c(U,Z))∗Λ.278

This function computes the gradient at Z when we use the true state Ū and true adjoint Λ̄:279

g(Λ̄, Ū,Z) = d2f(Ū,Z) + (d2c(Ū,Z))∗Λ̄ = ∇F (Z).280

On the other hand, the function g can approximate the gradient using the sketched variables as281

gr(Z) := g(Λ̂r, Ûr,Z).282

Algorithm 4.2 describes a backward-in-time procedure for computing a limited-memory approximate gra-283

dient gr(Z) from the sketched state Ûr. One can also use the sketching method to compute second-order284

information with limited storage. Matrix-free second-order optimization methods such as Krylov-Newton285

methods require only the application of the Hessian to a vector: for an arbitrary vector V ∈ Z, we must com-286

pute ∇2F (Z)V. Using the chain rule, we can apply the Hessian to V by first computing the state sensitivity287

W̄ := S′(Z)V ∈ U (i.e., the solution to (2.3)) and then the adjoint sensitivity P̄ := Λ′(Z)V ∈ U. The state288

sensitivity is computed forward in time, while the adjoint sensitivity is computed backward in time. We can289

control the storage footprint for these operations by sketching the state, adjoint, and state sensitivity. Algo-290

rithms A.3 to A.6 detail the steps required to apply the Hessian with storage O((r1 +r2 +r3)(M+N)+mN)291

for rank parameters r1, r2, r3 ≤ min{M,N}.292

4.2. Regularity assumptions. Throughout the remainder of the paper, we make the following regu-293

larity assumptions. These assumptions allow us to develop provable guarantees on the optimization error in294

the algorithms presented in the next two subsections. These conditions are adapted from [36].295

Assumption 1. Assume that the following conditions hold for the dynamic optimization problem (2.2).296

1. The set of states corresponding to controls in an open and bounded set Z0 ⊆ Z is bounded: there297

exists U0 ⊂ U open and bounded such that {U ∈ U | ∃Z ∈ Z0, c(U,Z) = 0} ⊆ U0.298

2. There exist singular value thresholds 0 < σ0 ≤ σ1 < ∞ such that for any U ∈ U0 and Z ∈ Z0, the299

state Jacobian matrix d1c(U,Z) satisfies σ0 ≤ σmin(d1c(U,Z)) ≤ σmax(d1c(U,Z)) ≤ σ1.300

3. The following functions are Lipschitz continuous on U0 × Z0 with respect to their first arguments:301

(a) The state Jacobian of the constraint, d1c(U,Z);302

(b) The control Jacobian of the constraint, d2c(U,Z);303

(c) The state gradient of the objective function, d1f(U,Z);304

(d) The control gradient of the objective function, d2f(U,Z).305

8

This manuscript is for review purposes only.

Algorithm 4.2 Compute gradient from sketched state.

Input: A control iterate Z ∈ Rm×N and sketch object {U}r for state
Output: Approximate gradient g = gr(Z) ≈ ∇F (Z)
Storage: O(r(M +N) +mN)

1: function Gradient({U}r, Z)
2: (ucurr,unext)← ({U}r.Column(N − 1), {U}r.Column(N))
3: Solve the adjoint equation at index N for λnext,

(d2cN (ucurr,unext, zN))∗λnext = d2fN (ucurr,unext, zN)

4: Compute gradient at index N ,

gN ← d3fN (ucurr,unext, zN) + (d3cN (ucurr,unext, zN))∗λnext

5: for n← N − 1 to 1 do
6: if n = 1 then
7: uprev ← u0

8: else
9: uprev ← {U}r.Column(n− 1))

10: Solve the adjoint equation at index n for λcurr,

(d2cn(uprev,ucurr, zn))∗λcurr = d2fn(uprev,ucurr, zn) + d1fn+1(ucurr,unext, zn+1)

− (d1cn+1(ucurr,unext, zn+1))∗λnext

11: Compute gradient at index n,

gn ← d3fn(uprev,ucurr, zn) + (d3cn(uprev,ucurr, zn))∗λcurr

12: (unext,ucurr,λnext)← (ucurr,uprev,λcurr)

13: return g = [g1, . . . , gN]

These assumptions are often satisfied in applications. For example, we show in Section 5 that they hold for306

optimal control problems with parabolic PDE constraints.307

4.3. A fixed-rank approach. A natural limited-memory algorithm to solve the dynamic optimization308

problem (2.2) is to fix the sketch rank parameter r used to compute the gradient a priori. Algorithm 4.3309

shows the steps involved in this method. The resulting approximate gradient can be used inside any first-310

order optimization method to (approximately) solve the dynamic optimization problem (2.2). In this section,311

we analyze the error of the resulting method and prove a useful stopping criterion under Assumption 1.312

Algorithm 4.3 Fixed-rank algorithm for approximate gradient.

Input: A control iterate Z ∈ Rm×N and rank parameter r ≤ min{M,N}.
Output: Approximate gradient gr(Z)
Storage: O(r(M +N) +mN)

1: function FixedRankGradient(Z)
2: {U}r ← Sketch(M,N, rank = r) Initialize sketch object for state
3: F ← SolveState!({U}r,Z) Solve state equation
4: {U}r.Reconstruct!() Reconstruct low rank factors
5: g ← Gradient({U}r,Z) Compute gradient
6: return g

Proposition 4.1. Suppose Assumption 1 holds for a bounded control set Z0. Then there exists κ0, κ1 >313

9

This manuscript is for review purposes only.

0 such that the error in the state satisfies314

(4.1) κ0

∥∥U− Ū
∥∥ ≤ ‖c(U,Z)‖ ≤ κ1

∥∥U− Ū
∥∥ ∀U ∈ U0, Z ∈ Z0,315

where U0 ⊆ U is defined in Assumption 1.1. Furthermore, the error in the adjoint is controlled by the adjoint316

residual together with the state residual: for some κ2 > 0 and κ3 > 0,317

(4.2)
∥∥Λ− Λ̄

∥∥ ≤ κ2 ‖c(U,Z)‖+ κ3 ‖h(Λ,U,Z)‖ ∀U, Λ ∈ U0, ∀Z ∈ Z0.318

Hence, the error in the gradient is controlled by the adjoint and state residuals: for some κ4 > 0 and κ5 > 0,319

(4.3)
∥∥g(Λ,U,Z)− g(Λ̄, Ū,Z)

∥∥ = ‖g(Λ,U,Z)−∇F (Z)‖ ≤ κ4 ‖c(U,Z)‖+ κ5 ‖h(Λ,U,Z)‖ .320

Remark 4.2. All constants in Proposition 4.1 depend only on finite quantities defined by Assumption 1.321

Proof. The proof of this result is similar to the proofs of Propositions A.1-2 in [36]. To bound the error322

in the state, recall that the state residual is zero when evaluated at the true state, c(Ū,Z) = 0. Therefore,323

c(U,Z) = c(U,Z)− c(Ū,Z) =

∫ 1

0

d1c(Ū + t(U− Ū),Z) · (U− Ū) dt.324

The error bound (4.1) then follows from Assumption 1.2 using κ0 = σ0 and κ1 = σ1. Similarly we show the325

bound on the adjoint error using the adjoint residual,326

h(Λ, Ū,Z) = h(Λ, Ū,Z)− h(Λ̄, Ū,Z) = (d1c(Ū,Z))∗(Λ− Λ̄),327

together with the Cauchy-Schwarz inequality and Assumption 1.2 to see that328

σ0

∥∥Λ− Λ̄
∥∥ ≤ ∥∥h(Λ, Ū,Z)

∥∥ ≤ σ1

∥∥Λ− Λ̄
∥∥ .329

We now bound the adjoint residual as330 ∥∥h(Λ, Ū,Z)
∥∥ ≤ ‖h(Λ,U,Z)‖+

∥∥h(Λ, Ū,Z)− h(Λ,U,Z)
∥∥ ,331

≤ ‖h(Λ,U,Z)‖+
∥∥d1c(U,Z)− d1c(Ū,Z)

∥∥ ‖Λ‖+
∥∥d1f(U,Z)− d1f(Ū,Z)

∥∥ .332333

The bound (4.2) follows from the Lipschitz continuity of d1c and d1f , the boundedness of U0×Z0, and (4.1).334

The proof of (4.3) is identical to the proof of Proposition A.2 in [36]. In particular, (4.3) follows from (4.1),335

(4.2) and the assumed Lipschitz continuity of d2c and d2f .336

Corollary 4.3. Suppose Assumption 1 holds for a bounded control set Z0. Fix a control Z ∈ Z0 and337

rank parameter r. Suppose the approximate state Ûr = {{Ū}}r is in U0 almost surely. Then the state residual338

is bounded by the tail energy of the true state Ū on average:339

E ‖c(Ûr,Z)‖ ≤ 2κ1 τr+1(mat(Ū,M,N)).340

Now recall the approximate adjoint Λ̂r solves the adjoint equation (2.4) at the approximate state Ûr. Suppose341

that Λ̂r ∈ U0 almost surely. Then the error in the adjoints satisfies342

(4.4) E ‖Λ̂r − Λ̄‖ ≤ 2κ1κ2 τr+1(mat(Ū,M,N)).343

Finally, the approximate gradient gr(Z) = g(Λ̂r, Ûr,Z) satisfies the error bound344

(4.5) E ‖gr(Z)−∇F (Z)‖ ≤ 2κ1κ4 τr+1(mat(Ū,M,N)).345

Proof. This result is a direct consequence of Proposition 4.1 and Theorem 3.1.346

Corollary 4.3 suggests that we should choose the fixed rank parameter r so that the tail energy,347

τr+1(mat(Ū,M,N)), is small. However, it can be difficult to choose a good fixed rank parameter in advance,348

since the tail energy of the true state Ū depends on the control variable Z. Under stronger assumptions on349

the reduced objective F , we can bound the distance from a given control to the optimum as a function of350

the approximate gradient and the state residual. Both of these are easy to compute, and hence this result351

can be used as a stopping criterion.352

10

This manuscript is for review purposes only.

Theorem 4.4. Instate the assumptions of Corollary 4.3 for control Z ∈ Z0 and rank parameter r.353

Additionally assume that the reduced objective function F is strongly convex on Z0 with parameter α > 0.354

Let Z? ∈ Z0 denote the solution to the reduced dynamic optimization problem (2.2). Then355

(4.6) α ‖Z− Z?‖ ≤ κ4 ‖c(Ur,Z)‖+ ‖gr(Z)‖ .356

Proof. Using the strong convexity of F and the optimality of Z?, the error in control is bounded above357

by the gradient of the reduced objective function F as358

α ‖Z− Z?‖2 ≤ 〈∇F (Z)−∇F (Z?),Z− Z?〉Z = 〈∇F (Z),Z− Z?〉Z.359

Applying the Cauchy-Schwarz inequality and employing (4.3) ensures that360

α ‖Z− Z?‖ ≤ ‖∇F (Z)− gr(Z) + gr(Z)‖ ≤ ‖∇F (Z)− gr(Z)‖+ ‖gr(Z)‖ ≤ κ4 ‖c(Ur,Z)‖+ ‖gr(Z)‖ .361362

To use Theorem 4.4, run any optimization method using the approximate gradient gr(Z). Suppose the363

method terminates after k iterations at control Z(k) so that ‖gr(Z(k))‖ ≤ ε. Theorem 4.4 shows that the364

error in our optimal control is controlled by the state residual:365

α‖Z(k) − Z?‖ ≤ κ4‖c(Ur,Z)‖+ ε.366

4.4. An adaptive rank approach. In this section, we introduce an optimization algorithm, the367

sketched trust-region method, that dynamically adjusts the sketching rank parameter used to compute the368

approximate gradient. The rank is chosen to guarantee convergence to a stationary point of the dynamic369

optimization problem (2.2). This algorithm relies on the trust-region framework [7], which converges despite370

inexact first- and second-order information [14, 19, 20]. Unlike the fixed-rank method described in the371

previous section, the sketched trust-region method is a complete limited-memory optimization recipe.372

Let us describe the standard trust-region method and the conditions required for convergence in the373

context of the dynamic optimization problem (2.2). Let Z(k) be the control at the kth iteration, with374

corresponding reduced objective function value f (k) := F (Z(k)). The trust-region method approximates the375

reduced objective function centered around Z(k), ν 7→ F (Z(k) + ν), by a quadratic model376

m(k)(ν) := f (k) + 〈g(k),ν〉Z +
1

2
〈H(k)ν,ν〉Z.377

To find the next iterate, the trust-region method computes a step ν̄ which approximately1 solves the trust-378

region subproblem constrained by the trust-region radius ∆(k):379

(4.8)
minimize m(k)(ν)
subject to ‖ν‖ ≤ ∆(k).

380

This step is accepted so long as the actual decrease in the objective function value is large enough relative381

to the predicted decrease according to the model m(k). If the step is accepted and the actual reduction382

exceeds a specified threshold, the trust-region radius ∆(k) is increased. If the step is rejected we decrease383

the trust-region radius.384

To ensure global convergence of the trust-region method, the model used to form the trust-region sub-385

problem must satisfy Assumption 2 [19].386

Assumption 2 (Trust-region model).387

1 Formally, the algorithm computes a step ν̄ that satisfies the fraction of Cauchy decrease condition [7],

(4.7) m(k)(0)−m(k)(ν̄) ≥ κfcd‖g(k)‖min

{
∆(k),

‖g(k)‖
1 +

∥∥H(k)
∥∥
}
,

for some κfcd ≥ 0 independent of k. This condition is easy to achieve using, e.g., the Dogleg or truncated Conjugate Gradient
method to compute ν̄.

11

This manuscript is for review purposes only.

1. The approximate gradient g(k) is close to the true gradient ∇F (Z(k)) in that it satisfies388

(4.9) ‖g(k) −∇F (Z(k))‖ ≤ θmin
{
‖g(k)‖,∆(k)

}
,389

for some fixed θ > 0 independent of k.390

2. The approximate Hessians H(k) are bounded independent of k: there exists τ1 > 0 such that391

‖H(k)‖ ≤ τ1 <∞ ∀ k = 1, 2,392

We will show below how to ensure the first requirement with an approximate gradient g(k) := gr(Z(k))393

computed using the sketched state Ûr with a sufficiently large rank parameter r. The second requirement is394

easily ensured by setting H(k) to be the identity, while we expect (and observe) faster convergence in practice395

when H(k) is the approximate Hessian. See Algorithm A.5, which shows how to apply the approximate396

Hessian. Convergence is guaranteed regardless of the rank chosen for the Hessian approximation. We397

suggest fixing this parameter to be the same as the rank parameter for the approximate gradient.398

4.4.1. Choosing the rank to guarantee convergence. The sketched trust-region method sets g(k) =399

gr(Z(k)) for some rank r. Algorithm 4.4 ensures that r is chosen large enough that this approximate gradient400

satisfies the error bound (4.9), as proved in the following lemma. The function µ : N× [0,∞)→ N on line 9401

of Algorithm 4.4 dictates how the rank r is increased and therefore is increasing in its first argument and402

decreasing in its second. A simple choice would be µ(r, τ) = 2r or µ(r, τ) = r + 1.403

Lemma 4.5. Instate Assumption 1. Compute the gradient approximation g(k) using the Adaptive Rank404

Algorithm 4.4. Then g(k) satisfies the gradient error bound (4.9) with θ = κ4κgrad.405

Proof. The adaptive-rank algorithm controls the error in the gradient approximation by increasing the406

target rank parameter until the constraint residual satisfies407

(4.10) ‖c(Ûr,Z
(k))‖ ≤ κgrad min

{
‖gr(Z(k))‖,∆(k)

}
.408

A rank that satisfies (4.10) necessarily exists since the residual norm ‖c(Ûr,Z
(k))‖ → 0 as r → min{M,N}.409

Therefore, Proposition 4.1 provides a bound on the error in the gradient approximation,410 ∥∥∥gr(Z(k))−∇F (Z(k))
∥∥∥ ≤ κ4

∥∥∥c(Ûr,Z
(k))
∥∥∥ ≤ κ4κgrad min

{∥∥∥gr(Z(k))
∥∥∥ ,∆(k)

}
.

411

Algorithm A.2 presents a function ResidualNorm that computes the Frobenius norm of the state residual.412

Algorithm 4.4 Adaptive-rank algorithm for approximate gradient.

Input: A control iterate Z ∈ Rm×N , initial rank estimate r, sketch object for state {U}r, trust-region radius
∆ > 0, state residual tolerance κgrad > 0, and rank update function µ : N× [0,∞)→ N.

Output: Approximate gradient gr(Z) ≈ ∇F (Z) for rank parameter r such that the bound (4.10) is satisfied.
Storage: O(r(M +N) +mN) for some rank parameter r ≤ min{M,N}.

1: function AdaptiveRankGradient(Z, r, {U}r)
2: repeat
3: {U}r.Reconstruct!() Reconstruct low-rank factors
4: rnorm← ResidualNorm({U}r,Z) Compute norm of constraint residual
5: g ← Gradient({U}r,Z) Compute gradient
6: rtol← κgrad ·min{‖g‖,∆}. Compute residual tolerance
7: if rnorm ≤ rtol then Gradient approximation satisfies (4.9)
8: return g

9: r ← µ(r, rtol) Increase rank parameter
10: {U}r ← Initialize!(M,N, rank = r) Initialize sketch object for state
11: F ← SolveState!({U}r,Z). Solve state equation
12: until r > min{M,N}
13: return g

12

This manuscript is for review purposes only.

4.4.2. Sketched trust-region algorithm. We present the resulting sketched trust-region algorithm413

as Algorithm 4.5. To start the optimization we use an initial trust-region radius ∆(0), initial rank param-414

eter r0 and the initial control Z(0). The trust-region hyper-parameters of Algorithm 4.5 are the ratio of415

reduction thresholds 0 < η1 < η2 < 1 and the trust-region radius update parameter γ ∈ (0, 1). The func-416

tion SolveTRSubProblem computes the step ν̄ that approximately solves the trust-region subproblem (4.8)417

and satisfies the fraction of Cauchy decrease condition (4.7). Internally, SolveTRSubProblem may use the418

function ApplyFixedRankHessian (see Algorithm A.5) to apply the fixed-rank Hessian approximation. To419

validate the trust-region step, we compare the actual and predicted reductions,420

ared(k) := F (Z(k))− F (Z(k) + ν̄) and pred(k) := m(k)(0)−m(k)(ν̄).421422

We accept the step if their ratio is greater than the threshold η1. The predicted reduction can be readily423

computed as the model m(k) is known. The actual reduction requires us to solve the state and evaluate the424

reduced objective function at the control candidate Z(k) + ν̄. The sketched trust-region method sketches425

the state at Z(k) + ν̄ while computing the actual reduction so that (if the step is accepted) the approximate426

gradient can be computed using the sketch without solving the state equation again. The following theorem

Algorithm 4.5 Sketched trust-region algorithm

Input: Initial control Z(0), trust-region radius ∆(0), target rank parameter r0,
and trust-region hyper parameter set P = {η1, η2, γ}

Output: Control iterate Z(K) such that the stopping criterion is satisfied
1: function SketchedTrustRegion(Z(0), ∆(0), r0, P)
2: {U}r ← Initialize!(M,N, rank = r0) Initialize state sketch
3: F ← SolveState!({U}r,Z(k)) Sketch state and evaluate objective
4: r ← r0 Set sketch rank
5: while “Not Converged” do
6: (g(k), r)← AdaptiveRankGradient(Z(k), r, {U}r) Approximate gradient

7: (ν̄,pred(k))← SolveTRSubProblem(g(k),∆(k)) Compute trial step
8: {U}r ← Initialize!(M,N, rank = r) Reinitialize state sketch
9: f (k+1) ← SolveState!({U}r,Z(k) + ν̄) Compute new objective function value

10: ρ(k) = (f (k) − f (k+1))/pred(k) Compute ratio of reduction
11: if ρ(k) ≥ η1 then Validate step using ratio of reduction
12: Z(k+1) = Z(k) + ν̄
13: else
14: Z(k+1) = Z(k)

15: if ρ(k) ≥ η2 then Update trust-region radius
16: ∆(k+1) ∈ [∆(k),∞)
17: else if ρ(k) ≤ η1 then
18: ∆(k+1) ∈ (0, γ‖ν̄‖]
19: else
20: ∆(k+1) ∈ [γ‖ν̄‖,∆(k)]

427

shows that the sequence of iterates {Z(k)} generated by Algorithm 4.5 converges to a stationary point of the428

reduced objective function F .429

Theorem 4.6 (Convergence of the sketched trust-region algorithm). Instate Assumption 1, and further430

suppose that the reduced objective function F is bounded below and twice continuously differentiable with431

locally uniformly bounded Hessian: for any bounded convex set Z0 ⊂ Z, there exists τ0 > 0 such that432 ∥∥∇2F (Z)
∥∥ ≤ τ0 <∞ ∀Z ∈ Z0.433

Suppose that the iterates Z(k) generated by Algorithm 4.5 lie in the open, bounded and convex set Z0 ⊂ Z for434

all k. Then, the sequence of iterates {Z(k)} satisfies435

lim inf
k→∞

‖g(k)
r ‖ = lim inf

k→∞
‖∇F (Z(k))‖ = 0.436

13

This manuscript is for review purposes only.

Proof. Notice that the trust-region model used by Algorithm 4.5 satisfies Assumption 2. Therefore, the437

proof of this result follows from the convergence analysis for the inexact trust-region method in [19] with438

only a slight modification to account for the local assumptions associated with Z0.439

Remark 4.7. The assumption that F is twice continuously differentiable can be relaxed to the require-440

ment that F is continuously differentiable with Lipschitz continuous gradient. In this case, the proof of441

Theorem 4.6 is virtually identical to the proof in [19]; however, the proofs of Lemmas A.2 and A.3 in [19]442

must be updated accordingly.443

5. Optimal control of linear parabolic PDEs. In this section, we introduce a class of linear444

parabolic optimal control problems and discuss how to discretize them to obtain a problem of the form445

(2.1) that satisfies Assumption 1 and the inexact gradient condition (4.9). Let Ω ⊂ Rd be an open, con-446

nected, and bounded set and let Γ ⊆ Ω ∪ ∂Ω where ∂Ω denotes the boundary of Ω. The set Γ is the spatial447

support of the control function and permits both boundary and volumetric controls. The state is supported448

on the space-time cylinder ΩT := (0, T) × Ω and the control is supported on ΓT := (0, T) × Γ for T > 0.449

We denote by H1(Ω) the usual Sobolev space of L2(Ω)-functions with weak derivatives in L2(Ω) and let450

V ⊆ H1(Ω) be a separable Hilbert space such that V is continuously and densely embedded into L2(Ω)451

(typically, V = H1(Ω) or V = H1
0 (Ω)). Furthermore, we assume that Γ is sufficiently regular so that452

v 7→
∫

Γ

gv dx ∈ V ∗ ∀ g ∈ L2(Γ),453

where V ∗ denotes the topological dual space of V .454

Let L(t) : V → V ∗ denote a second-order linear elliptic partial differential operator for t ∈ [0, T]. For455

example, L(t) could represent the weak form of the advection-reaction-diffusion operator456

(5.1) u 7→ {−∇ · (A(t, ·)∇u) + b(t, ·) · ∇u+ c(t, ·)u},457

where A : ΩT → Rd×d is the diffusivity tensor, b : ΩT → Rd is an advection field, and c : ΩT → R is a reaction458

coefficient. Here, ∇ refers to the derivative with respect to x. To guarantee the existence of solutions, we459

assume that the linear operator L is uniformly bounded and uniformly coercive, which we define below.460

Definition 5.1. The operator L is uniformly bounded if for some ε0 > 0 independent of t ∈ [0, T],461

〈L(t)u, v〉V ∗,V ≤ ε0‖u‖V ‖v‖V ∀u, v ∈ V,462

for almost all (a.a.) t ∈ [0, T]. Moreover, L is uniformly coercive if for some ε1 > 0 independent of t ∈ [0, T],463

ε1‖v‖2V ≤ 〈L(t)v, v〉V ∗,V ∀ v ∈ V,464

for a.a. t ∈ [0, T]. Here, 〈·, ·〉V ∗,V denotes the duality pairing between V ∗ and V .465

In addition to uniformly bounded and coercive, we assume that t 7→ 〈L(t)u, v〉V ∗,V is measurable for all466

u, v ∈ V , β ∈ L2(0, T ;V ∗) is a forcing term, and u0 ∈ L2(Ω) is the initial state. We consider the optimal467

control problem468

minimize

{
1

2

∫ T

0

∫
Ω

(u− w)2 dxdt+
α

2

∫ T

0

∫
Γ

z2 dxdt

}
(5.2a)469

subject to u ∈W (0, T), z ∈ L2(ΓT)470
∫

Ω

∂u

∂t
(t, ·)v dx+ 〈[L(t)u](t, ·), v〉V ∗,V = 〈β(t), v〉V ∗,V +

∫
Γ

z(t, ·)v dx a.a. t ∈ [0, T], ∀ v ∈ V

u(0, x) = u0(x) a.a. x ∈ Ω,

(5.2b)471

472

where α > 0 is the control penalty parameter, w ∈ L2(ΩT) is the desired state, and473

W (0, T) := {v : ΩT → R | v ∈ L2(0, T ;V) and ∂v/∂t ∈ L2(0, T ;V ∗)}474

is the solution space for (5.2b). In fact, under the stated assumptions, (5.2b) has a unique solution in W (0, T)475

for any z ∈ L2(ΓT) (cf. [15, Th. 1.35]).476

14

This manuscript is for review purposes only.

5.1. Discretization. To obtain a finite-dimensional approximation of (5.2), we discretize the PDE477

(5.2b) using Galerkin finite elements in space and implicit Euler in time. The subsequent results also hold478

for other time discretizations including Crank-Nicolson or explicit Euler. We partition the time interval479

[0, T] into N subintervals (tn−1, tn) with 0 = t0 < t1 < . . . < tN−1 < tN = T and denote the finite-element480

approximation space for the state by VM ⊂ V where M is the dimension of VM . We further denote by481

Zm ⊂ L2(Γ) the control approximation space where m is the dimension of Zm. Using these spaces, we482

can write the discretized state equation as: for fixed zm,n ∈ Zm with n = 1, . . . , N , find uM,n ∈ VM with483

n = 1, . . . , N such that uM,0 = ũ0 where ũ0 ∈ VM is an approximation of u0 and484 ∫
Ω

uM,nv dx+ δtn〈L(tn)uM,n, v〉V ∗,V =

∫
Ω

uM,n−1v dx+ δtn〈β(tn), v〉V ∗,V + δtn

∫
Γ

zm,nv dx ∀ v ∈ VM ,485
486

where δtn := tn − tn−1. Given bases {φi}Mi=1 and {ψi}mi=1 of VM and Zm, respectively, we can rewrite the487

discretized PDE as the linear system of equations: given zn ∈ Rm for n = 1, . . . , N , find un ∈ RM such that488

(5.3) cn(un−1,un, zn) = (M + δtnKn)un −Mun−1 − δtnbn − δtnBzn = 0, n = 1, . . . , N,489

where490

[M]ij :=

∫
Ω

φjφi dx, [Kn]ij := 〈L(tn)φj , φi〉V ∗,V , [B]ij :=

∫
Γ

ψjφi dx, and [bn]j := 〈β(tn), φj〉V ∗,V .491

With this notation, the discretized version of (5.2a) is492

(5.4) minimize
U∈U,Z∈Z

1

2

N∑
n=1

δtn
{

(un −wn)>M(un −wn) + αz>n Rzn
}

subject to (5.3),493

where we have approximated the temporal integral in the objective function using the right endpoint rule,494

wn ∈ RM are the coefficients associated with an approximation of w(tn, ·) in VM , and495

[R]ij =

∫
Γ

ψjψi dx.496

The assumptions on L and the choice of discretization ensure that (M + δtnKn) is invertible for all n =497

1, . . . , N and therefore Assumption 1.2 is satisfied. In addition, since the dynamic constraint in (5.4) is498

linear in the state and control variables, and the objective function in (5.4) is quadratic, Assumption 1.3 is499

satisfied. Finally, since the matrices (M + δtnKn) are invertible and the constraint is linear, the dynamic500

constraint has a unique solution that depends linearly on the control Z ∈ Z. Therefore, Assumption 1.1501

holds for any bounded set of controls. To verify (4.9), we employ stability estimates for (5.3).502

5.2. Stability estimates. The linearity of (5.2b) and the uniform coercivity of L provide numerous503

convenient properties associated with the discretized PDE (5.3). In this section, we use these properties to504

ensure that the required assumptions for our sketching algorithm are satisfied. We first have the following505

error bound associated with the discretized state equation (5.3).506

Theorem 5.2. Let Ū ∈ U denote the solution to (5.3) for fixed control Z ∈ Z and let U ∈ U be arbitrary.507

Then, the following bound holds508

‖un − ūn‖M ≤ (1 + δtnωε1)−1

{
‖u0 − ū0‖M +

n∑
i=1

‖ci(ui−1,ui, zi)‖M−1

}
, n = 1, . . . , N,509

where ūn and un are the nth subvectors in Ū and U, respectively, and ω > 0 is the embedding constant510

associated with V ↪→ L2(Ω).511

Proof. First, we write cn(un−1,un, zn)>(un−ūn) in the form of (5.1). To this end, let ūM,n, uM,n ∈ VM512

denote the functions513

ūM,n =

M∑
i=1

[ūn]iφi and uM,n =

M∑
i=1

[un]iφi,514

15

This manuscript is for review purposes only.

respectively, and ηn = (uM,n − ūM,n). Then we have that cn(un−1,un, zn)>(un − ūn) is equal to515 ∫
Ω

uM,nηn dx+ δtn〈L(tn)uM,n, ηn〉V ∗,V −
∫

Ω

uM,n−1ηn dx− δtn〈β(tn), ηn〉V ∗,V − δtn
∫

Γ

zm,nηn dx516

=

∫
Ω

η2
n dx+ δtn〈L(tn)ηn, ηn〉V ∗,V −

∫
Ω

ηn−1ηn dx,517
518

since ūM,n solves (5.3). The Cauchy-Schwarz inequality, the continuous embedding of V into L2(Ω), and the519

uniform coercivity of L then ensure that520

(1 + δtnωε1)‖un − ūn‖M ≤ ‖cn(un−1,un, zn)‖M−1 + ‖un−1 − ūn−1‖M.521

Repeated application of this inequality yields the desired bound.522

Theorem 5.2 ensures that the lower bound in (4.1) holds for all Z ∈ Z and U ∈ U (rather than only on523

some bounded sets Z0 and U0). The upper bound in (4.1) follows due to the linearity of cn and holds again524

for all Z ∈ Z and U ∈ U. Moreover, if Ur is the sketched state, then Theorem 5.2 yields525

‖ur,n − ūn‖M ≤ (1 + δtnωε1)−1
n∑

i=1

‖ci(ur,i−1,ur,i, zi)‖M−1 .526

Next, we demonstrate that the adjoint error bound (4.2) holds globally as well. To this end, we write the527

adjoint equation associated with the discretized problem (5.4):528

(M + δtNKN)∗λN = −δtNM(uN −wN),(5.5a)529

(M + δtnKn)∗λn = Mλn+1 − δtnM(un −wn) for n = N − 1, . . . , 1.(5.5b)530531

As before, we denote the solution to (5.5) with un replaced by ūn for n = 1, . . . N by Λ̄. We have the532

following useful stability estimate associated with (5.5) that bounds the error in the adjoint.533

Theorem 5.3. Let Λ̄ ∈ U be the solution to the adjoint equation (5.5) associated with Ū ∈ U and let534

Λ, U ∈ U be arbitrary. Then the following bound holds535

‖λn − λ̄n‖M ≤ (1 + δtnωε1)−1

{
N∑

j=n

‖(M + δtnKn)∗λn −Mλn+1 + δtnM(un −wn)‖M−1536

+ ‖λN − λ̄N‖M + δtn‖un − ūn‖M

}
, n = 1, . . . , N,(5.6)537

538

where λ̄n and λn denote the nth subvectors of Λ̄ and Λ, respectively and ω > 0 is the embedding constant539

associated with V ↪→ L2(Ω).540

Proof. Using similar notation as in the proof of Theorem 5.2, we can write adjoint residual evaluated at541

Λ and U as542

(5.7)

∫
Ω

λM,nv dx+ δtn〈L(tn)∗λM,n, v〉V ∗,V −
∫

Ω

λM,n+1v dx+ δtn

∫
Ω

(uM,n − wM,n)v dx,543

for v ∈ VM where wM,n ∈ VM is the appropriate approximation of w. Evaluating this residual at Λ̄ and Ū544

returns zero. Let en = (λM,n − λ̄M,n) and ηn = (uM,n − ūM,n). With this notation, (5.7) is equal to545 ∫
Ω

env dx+ δtn〈L(tn)∗en, v〉V ∗,V −
∫

Ω

en+1v dx+ δtn

∫
Ω

ηnv dx.546

Set v = en. Then, applying the Cauchy-Schwarz inequality, and using the uniform coercivity of L and the547

continuous embedding of V into L2(Ω) yields548

(1 + δtnωε1)‖λn − λ̄n‖M ≤‖(M + δtnKn)∗λn −Mλn+1 + δtnM(un −wn)‖M−1549

+ ‖λn+1 − λ̄n+1‖M + δtn‖un − ūn‖M.550551

Repeated application of this bound proves the desired result.552

16

This manuscript is for review purposes only.

By Theorems 5.2 and 5.3, we see that the adjoint error bound (4.2) holds globally. In particular, let Λr553

denote the solution to (5.5) associated with the sketched state Ur. Then Theorems 5.2 and 5.3 ensure that554

‖λr,n − λ̄n‖M ≤ (1 + δtnωε1)−1δtn‖ur,n − ūn‖M ≤ (1 + δtnωε1)−2δtn

n∑
i=1

‖ci(ur,i−1,ur,i, zi)‖M−1 .555

556

Hence Algorithm 4.4 ensures that the inexact gradient condition (4.9) is satisfied.557

6. Numerical examples. We demonstrate the effectiveness of the sketched trust-region algorithm on558

two PDE-constrained optimization problems. We present one example, the optimal control of an advection-559

reaction-diffusion equation, that satisfies the assumptions of the previous section, and therefore is guaranteed560

to converge. We also present results on optimal flow control. This application is governed by the Navier-561

Stokes equations for which it is difficult to verify the assumptions of our theory, and so our algorithm does562

not necessarily admit guarantees for this problem. Nevertheless, we show remarkably good performance for563

this application.564

In the numerics, we compute the function ResidualNorm using a domain-specific weighted norm (instead565

of the Frobenius norm) that respects the natural problem scaling. The guarantees of the method still hold:566

since all norms are equivalent in finite-dimensional vector spaces, we can ensure the gradient error bound567

(4.9) holds (with a different value of the parameter θ) using any norm to measure the state residual. In568

addition, for both examples we set κgrad = 1, ∆(0) = 10, η1 = 0.05, η2 = 0.9, and γ = 0.25 in Algorithm 4.5.569

We terminate the algorithm if the norm of the gradient is smaller than a prescribed tolerance gtol or when570

it exceeds a set maximum number of iterations maxit.571

6.1. Optimal control of an advection-reaction-diffusion equation. For this example, our goal572

is to control the linear parabolic PDE (5.2b) where Ω = (0, 0.6) × (0, 0.2), Γ = Ω, and L is given by (5.1)573

with time-independent coefficients. In particular, the forcing term β is the characteristic function of the574

intersection of the ball of radius 0.07 centered at (0.1, 0.1)> with Ω, the diffusivity coefficient A = 0.1 I575

where I ∈ Rd×d is the identity matrix, the reaction coefficient is c ≡ 1, and the advection field is given576

by b(x) = (7.5 − 2.5x1, 2.5x2)>. We further supply (5.2b) with zero initial concentration u0 = 0 and pure577

Neumann boundary conditions (i.e., V = H1(Ω)). Note that L is constant in time and is uniformly coercive578

since ∇ · b ≡ 0 in Ω and b · n ≥ 0 on ∂Ω where n denotes the outward normal vector. Moreover, we set the579

target state w ≡ 1. Our optimization problem is then given by (5.2) with α = 10−4. We discretized (5.2b)580

in space using Q1 finite elements on a uniform mesh of 60× 20 quadrilateral elements. In time, we discretize581

using Implicit Euler with 500 equal time steps. This discretization results in 1,281 × 500 = 640,500 degrees582

of freedom. Moreover, the maximum possible rank of the state matrix is 500. Figure 2 depicts the tail583

energy and sketching error averaged over 20 realizations for the uncontrolled and optimal states. Both the584

tail energy and sketching error decay exponentially fast until saturating below O(10−12).585

We solved this problem using a Newton-based trust-region algorithm with fixed sketch rank and using586

Algorithm 4.5 with the rank update function µ(r, τ) = max{r + 2, d(b − log τ)/ae} where a > 0 and b ∈ R587

are computed by fitting a linear model of the logarithm of the average sketching error as a function of the588

rank for the uncontrolled state. For this problem, a = 2.6125, b = 2.4841, gtol = 10−7, and maxit = 20.589

The final objective value, the iteration count, the number of function evaluations, the number of gradient590

evaluations, the cumulative truncated conjugate gradient (CG) iteration count, and the compression factor591

ζ defined to be592

ζ :=
full storage

reduced storage
=

640,500

k(1,281 + 500) + s2
593

where k = 2r + 1, s = 2k + 1 for each rank parameter r from 1 to 5 are displayed in Table 1. Notice that594

with rank 1 the algorithm did not converge, whereas the optimal objective function value is achieved up595

to 6 digits with rank 2. This is likely due to inaccuracies in the gradient. For this problem, the rank-2596

sketch requires roughly three times more CG iterations (which dominate the computational work) than the597

full-storage algorithm; however, using the rank-2 sketch reduces the required memory by a factor of 70.96.598

The iteration history of Algorithm 4.5 is listed in the top section of Table 2. For comparison, we have599

also listed the iteration history for the full-storage algorithm in the bottom section of Table 2. We notice600

that the sketched trust-region algorithm performs comparably to the full-storage algorithm, but reduces the601

17

This manuscript is for review purposes only.

Uncontrolled

0 50 100

10 -10

10 -5

10 0

Sketch Error

Tail Energy

Optimal

0 50 100

10 -10

10 -5

10 0

Sketch Error

Tail Energy

Figure 2: The sketching error averaged over 20 realizations and the tail energy for the uncontrolled
state (left) and the optimal state (right) of the advection-reaction-diffusion example. Recall that
the rank of the sketch is k = 2r + 1.

required memory by a factor of ζ = 23.14 at the final iteration. It may be possible to further reduce the602

memory burden by tuning the parameter κgrad or by employing a different rank update function µ.

rank objective iteration nfval ngrad iterCG compression ζ
∗1 5.544040e-4 20 21 11 196 118.79

2 5.528490e-4 5 6 6 151 70.96

3 5.528490e-4 4 5 5 78 50.46

4 5.528490e-4 4 5 5 67 38.08

5 5.528490e-4 4 5 5 59 31.83

Adaptive 5.528490e-4 4 5 5 65 23.14

Full 5.528490e-4 4 5 5 53 1.00

Table 1: Algorithmic performance summary for the advection-reaction-diffusion example for fixed
rank, adaptive rank and full storage: objective is the final objective function value, iteration is
the total number of iterations, nfval is the number of function evaluations, ngrad is the number
of gradient evaluations, iterCG is the total number of truncated CG iterations, and compression
ζ is the compression factor. ∗The rank 1 experiment terminated because it exceeded the maximum
number of iterations.

603

6.2. Optimal control of flow past a cylinder. For this example, we follow the problem set up in604

[13] and consider fluid flow past a cylinder. The cylinder impedes the flow; our goal is to rotate the cylinder605

to improve the flow rate. Formally, we let cylinder C ⊂ R2 denote the closed ball of radius R = 0.5 centered606

at the origin x0 = (0, 0)>, define the domain D = (−15, 45) × (−15, 15) and let Γout = {45} × (−15, 15)607

denote the outflow boundary. We consider the optimal flow control problem608

(6.1) minimize
z∈L2(0,T)

∫ T

0

{∫
∂C

(
1

Re

∂v

∂n
− pn

)
· (zτ − v∞) dx+

α

2
z(t)2

}
dt, α > 0,609

where the velocity and pressure pair (v, p) : [0, T]×D → R2 × R solves the Navier-Stokes equations610

∂v

∂t
− 1

Re
∆v + (v · ∇)v +∇p = 0 in (0, T)×D \ C(6.2a)611

∇ · v = 0 in (0, T)×D \ C(6.2b)612

1

Re

∂v

∂n
− pn = 0 on (0, T)× Γout(6.2c)613

v = v∞ on (0, T)× ∂D \ Γout(6.2d)614

v = zτ on (0, T)× ∂C(6.2e)615616

18

This manuscript is for review purposes only.

iter value gnorm snorm delta iterCG rank rnorm

A
d
a
p
t
i
v
e

0 5.446e-2 5.990e-3 --- 1.000e+1 --- 1 2.707e-4

1 1.375e-2 2.205e-3 1.000e+1 2.500e+1 1 1 1.990e-4

2 1.475e-3 1.408e-4 2.499e+1 6.250e+1 5 5 6.700e-7

3 5.531e-4 6.431e-7 4.077e+1 1.563e+1 27 7 3.893e-9

4 5.528e-4 5.039e-9 1.059e+0 3.906e+2 32 7 1.508e-9

F
u
l
l

0 5.446e-2 5.989e-3 --- 1.000e+1 --- --- ---

1 1.375e-2 2.201e-3 1.000e+1 2.500e+1 1 --- ---

2 1.472e-3 1.401e-4 2.500e+1 6.250e+1 5 --- ---

3 5.538e-4 1.361e-6 4.051e+1 1.563e+1 19 --- ---

4 5.528e-4 8.416e-9 2.178e+0 3.906e+2 28 --- ---

Table 2: The iteration histories for the adaptive rank (top) and full storage (bottom) algorithms:
iter is the iteration number, value is the objective function value, gnorm is the norm of the
gradient, snorm is the norm of the step, delta is the trust-region radius, iterCG is the number of
truncated CG iterations, rank is the rank of the sketch, and rnorm is the maximum residual norm
associated with the sketched state. In the adaptive rank algorithm, the rank is updated using the
rank update function µ(r, τ) if the maximum residual norm exceeds the prescribed tolerance.

with appropriately specified initial conditions on v and p. In (6.2), n is the outward normal vector on Γout,617

τ is the tangent vector618

τ(x) =

[
0 1
−1 0

]
(x− x0), x ∈ ∂C,619

and Re is the Reynold’s number. Problem (6.1) minimizes the power required to overcome the drag on C.620

See [13, p. 87] for a comprehensive physical interpretation of this problem. The control action z defined in621

(6.2e) is the angular velocity of the cylinder. The vector v∞ := (1, 0)> is the freestream velocity profile622

and the boundary condition (6.2c) is stress-free. Similar to [13], we generate initial conditions for (6.2) by623

simulating (6.2) on the time interval (−T0, 0) for some T0 > 0 starting with v(−T0, ·) and p(−T0, ·) set to624

the potential flow around C [4]. The first row of Figure 3 depicts the computed initial velocity v0.625

We discretized (6.2) in time with Implicit Euler and approximated the temporal integral in (6.1) with the626

right end-point rule. Moreover, we discretized (6.2) in space using Q2–Q1 finite elements on the quadrilateral627

mesh depicted in Figure 4. The mesh contains 2,672 elements and 2,762 vertices. For our results, we set the628

time step δtn = 0.025, T0 = 80, T = 20, and Re = 200. We refer to [11, 13, 15] and the references therein629

for partial verification of Assumption 1 for various flow control problems.630

The second row of Figure 3 depicts the optimal vorticity at the final time t = 20 (left) and the velocity631

field near the cylinder (right), while in the final row of Figure 3, we plot the computed optimal control.632

As seen in Figure 3, the optimal control effectively eliminates the vortex shedding seen in the first row of633

Figure 3 for the initial velocity. In Figure 5, we plot the sketching error averaged over 20 realizations and the634

tail energy (ranks 1 through 200) for the uncontrolled state (left) and the optimal state (right). We see that635

the decay in the sketching error and tail energy is roughly exponential, suggesting that our method should636

only require modest storage.637

We solved the discretized optimization problem using a Newton-based trust-region algorithm with fixed638

sketch ranks {8, 16, 32, 64} and using Algorithm 4.5 with the rank update function µ(r, τ) = 2r. The639

performance of the fixed rank, adaptive rank, and full storage experiments is summarized in Table 3. For640

each experiment, we set gtol = 10−5 and maxit = 40. The only fixed-rank experiment to converge was641

rank 64. However, the rank-32 experiment produced an objective function value that was within 6 digits642

of the optimal value. The rank-32 experiment likely did not converge due to inaccuracies in the gradient.643

For the adaptive algorithm, we started with the initial rank set to 8. The behavior of the rank updates as644

well as the required gradient inexactness tolerances and computed residual norms are plotted in Figure 6.645

Algorithm 4.5 required comparable computation as the full-storage approach, but reduced the memory by646

a factor of ζ = 5.88 at the final iteration. The memory burden could be further reduced by tuning κgrad or647

by choosing a less aggressive rank update function µ.648

19

This manuscript is for review purposes only.

Initial Vorticity (t = 0)

Controlled Vorticity (t = 20)

Initial Velocity (t = 0)

Controlled Velocity (t = 20)

Optimal Control

0 2 4 6 8 10 12 14 16 18 20

t

-0.6

-0.4

-0.2

0

0.2

0.4

z

Figure 3: The initial velocity (first row) and the final, controlled velocity (second row). These
images include the magnitude of vorticity (∇ × v) on the subdomain [−5, 15] × [−5, 5] (left) and
velocity v on the subdomain [−2, 6]× [−2, 2] (right). The bottom row depicts the computed optimal
control.

rank objective iteration nfval ngrad iterCG compression ζ
∗ 8 18.35919 40 41 15 136 45.44
∗16 18.20003 40 41 33 897 23.35
∗32 18.19779 40 41 31 236 11.80

64 18.19779 29 41 34 110 5.88

Adaptive 18.19779 23 24 24 121 5.88

Full 18.19779 29 30 24 107 ---

Table 3: Algorithmic performance summary for the flow control example for fixed rank, adaptive
rank and full storage: objective is the final objective function value, iteration is the total
number of iterations, nfval is the number of function evaluations, ngrad is the number of gradient
evaluations, iterCG is the total number of truncated CG iterations, and compression ζ is the
compression factor. ∗The rank 8, 16, and 32 experiments terminated because they exceeded the
maximum number of iterations.

20

This manuscript is for review purposes only.

Figure 4: Quadrilateral mesh with 2672 elements and 2762 vertices.

Uncontrolled

0 50 100 150 200

10 -10

10 -5

10 0

10 5

Sketch Error

Tail Energy

Optimal

0 50 100 150 200

10 -10

10 -5

10 0

10 5

Sketch Error

Tail Energy

Figure 5: The sketching error averaged over 20 realizations and the tail energy for the uncontrolled
state (left) and the optimal state (right) for the flow control example. Recall that the rank of the
sketch is k = 2r + 1.

0 5 10 15 20

10

20

30

40

50

60

70

0 5 10 15 20
10

-6

10
-4

10
-2

10
0

Tolerance

Residual Norm

Figure 6: Inexact gradient behavior of Algorithm 4.5 applied to the flow control problem. Left:
The sketch rank as a function of iteration. Right: The required gradient inexactness tolerance and
computed residual norm as functions of iteration.

Acknowledgments. MU and RM were supported in part by DARPA Award FA8750-17-2-0101. DPK649

and RM (in part) were supported by the Laboratory Directed Research and Development program at Sandia650

21

This manuscript is for review purposes only.

National Laboratories. Sandia National Laboratories is a multimission laboratory managed and operated by651

National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell652

International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under653

contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective654

views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S.655

Department of Energy or the United States Government.656

REFERENCES657

[1] A. C. Antoulas, Approximation of large-scale dynamical systems, vol. 6 of Advances in Design and Control, Society for658
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005, https://doi.org/10.1137/1.9780898718713.659

[2] S. R. Arridge and J. C. Schotland, Optical tomography: forward and inverse problems, Inverse Problems, 25 (2009),660
p. 123010, https://doi.org/10.1088/0266-5611/25/12/123010.661

[3] G. Aupy, J. Herrmann, P. Hovland, and Y. Robert, Optimal multistage algorithm for adjoint computation, SIAM662
Journal on Scientific Computing, 38 (2016), pp. C232–C255, https://doi.org/10.1137/1.9780898718713.663

[4] G. Batchelor, An Introduction to Fluid Dynamics, Cambridge Mathematical Library, Cambridge University Press, 2000,664
https://doi.org/10.1017/CBO9780511800955.665

[5] C. Boutsidis, D. P. Woodruff, and P. Zhong, Optimal principal component analysis in distributed and streaming666
models, in Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, ACM, 2016, pp. 236–667
249, https://doi.org/10.1137/1.9780898718713.668

[6] K. L. Clarkson and D. P. Woodruff, Numerical linear algebra in the streaming model, in Proceedings of the Forty-First669
ACM Symposium on Theory of Computing, Bethesda, 2009, https://doi.org/10.1145/1536414.1536445.670

[7] A. Conn, N. Gould, and P. Toint, Trust Region Methods, Society for Industrial and Applied Mathematics, 2000,671
https://doi.org/10.1137/1.9780898719857.672

[8] L. Dedè, Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control673
problems, SIAM Journal on Scientific Computing, 32 (2010), pp. 997–1019, https://doi.org/10.1137/090760453,674
http://link.aip.org/link/?SCE/32/997/1.675

[9] M. Fahl and E. Sachs, Reduced order modelling approaches to PDE–constrained optimization based on proper orthogonal676
decompostion, in Large-Scale PDE-Constrained Optimization, L. T. Biegler, O. Ghattas, M. Heinkenschloss, and677
B. van Bloemen Waanders, eds., Lecture Notes in Computational Science and Engineering, Vol. 30, Heidelberg, 2003,678
Springer-Verlag, https://doi.org/10.1007/978-3-642-55508-4 16.679

[10] A. Griewank and A. Walther, Algorithm 799: Revolve: An implementation of checkpointing for the reverse or adjoint680
mode of computational differentiation, ACM Trans. Math. Softw., 26 (2000), pp. 19–45, https://doi.org/10.1145/681
347837.347846.682

[11] M. Gunzburger, Perspectives in Flow Control and Optimization, Society for Industrial and Applied Mathematics, 2002,683
https://doi.org/10.1137/1.9780898718720.684

[12] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: probabilistic algorithms for685
constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217–288, https://doi.org/10.1137/686
090771806.687

[13] J.-W. He, R. Glowinski, R. Metcalfe, A. Nordlander, and J. Periaux, Active Control and Drag Optimization for688
Flow Past a Circular Cylinder: I. Oscillatory Cylinder Rotation, Journal of Computational Physics, 163 (2000),689
pp. 83 – 117, https://doi.org/10.1006/jcph.2000.6556.690

[14] M. Heinkenschloss and L. Vicente, Analysis of inexact trust-region sqp algorithms, SIAM Journal on Optimization,691
12 (2002), pp. 283–302, https://doi.org/10.1137/S1052623499361543.692

[15] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints, Mathematical Modelling:693
Theory and Applications, Springer Netherlands, 2008, https://doi.org/10.1007/978-1-4020-8839-1.694

[16] A. A. Jalali, C. S. Sims, and P. Famouri, Reduced order systems, vol. 343 of Lecture Notes in Control and Information695
Sciences, Springer-Verlag, Berlin, 2006, https://doi.org/10.1007/11597018.696

[17] C. Kaebe, J. H. Maruhn, and E. W. Sachs, Adjoint-based monte carlo calibration of financial market models, Fi-697
nance and Stochastics, 13 (2009), pp. 351–379, https://doi.org/10.1007/s00780-009-0097-9, https://doi.org/10.1007/698
s00780-009-0097-9.699

[18] A. D. Klose and A. H. Hielscher, Optical tomography using the time-independent equation of radiative transfer—part700
2: inverse model, Journal of Quantitative Spectroscopy and Radiative Transfer, 72 (2002), pp. 715 – 732, https:701
//doi.org/https://doi.org/10.1016/S0022-4073(01)00151-0.702

[19] D. Kouri, M. Heinkenschloss, D. Ridzal, and B. van Bloemen Waanders, A trust-region algorithm with adaptive703
stochastic collocation for PDE optimization under uncertainty, SIAM Journal on Scientific Computing, 35 (2013),704
pp. A1847–A1879, https://doi.org/10.1137/120892362.705

[20] D. P. Kouri and D. Ridzal, Inexact Trust-Region Methods for PDE-Constrained Optimization, Springer New York, New706
York, NY, 2018, pp. 83–121, https://doi.org/10.1007/978-1-4939-8636-1 3.707

[21] J. R. Krebs, J. E. Anderson, D. Hinkley, R. Neelamani, S. Lee, A. Baumstein, and M.-D. Lacasse, Fast full-708
wavefield seismic inversion using encoded sources, Geophysics, 74 (2009), pp. WCC177–WCC188, https://doi.org/709
10.1190/1.3230502.710

[22] M.-D. Lacasse, L. White, H. Denli, and L. Qiu, Full-Wavefield Inversion: An Extreme-Scale PDE-Constrained Opti-711
mization Problem, Springer New York, New York, NY, 2018, pp. 205–255, https://doi.org/10.1007/978-1-4939-8636-1712

22

This manuscript is for review purposes only.

https://doi.org/10.1137/1.9780898718713
https://doi.org/10.1088/0266-5611/25/12/123010
https://doi.org/10.1137/1.9780898718713
https://doi.org/10.1017/CBO9780511800955
https://doi.org/10.1137/1.9780898718713
https://doi.org/10.1145/1536414.1536445
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1137/090760453
http://link.aip.org/link/?SCE/32/997/1
https://doi.org/10.1007/978-3-642-55508-4_16
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846
https://doi.org/10.1137/1.9780898718720
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1006/jcph.2000.6556
https://doi.org/10.1137/S1052623499361543
https://doi.org/10.1007/978-1-4020-8839-1
https://doi.org/10.1007/11597018
https://doi.org/10.1007/s00780-009-0097-9
https://doi.org/10.1007/s00780-009-0097-9
https://doi.org/10.1007/s00780-009-0097-9
https://doi.org/10.1007/s00780-009-0097-9
https://doi.org/https://doi.org/10.1016/S0022-4073(01)00151-0
https://doi.org/https://doi.org/10.1016/S0022-4073(01)00151-0
https://doi.org/https://doi.org/10.1016/S0022-4073(01)00151-0
https://doi.org/10.1137/120892362
https://doi.org/10.1007/978-1-4939-8636-1_3
https://doi.org/10.1190/1.3230502
https://doi.org/10.1190/1.3230502
https://doi.org/10.1190/1.3230502
https://doi.org/10.1007/978-1-4939-8636-1_6
https://doi.org/10.1007/978-1-4939-8636-1_6
https://doi.org/10.1007/978-1-4939-8636-1_6

6.713
[23] C. Lee, J. Kim, and H. Choi, Suboptimal control of turbulent channel flow for drag reduction, Journal of Fluid Mechanics,714

358 (1998), p. 245–258, https://doi.org/10.1017/S002211209700815X.715
[24] M. W. Mahoney, Randomized algorithms for matrices and data, Found. Trends Mach. Learning, 3 (2011), pp. 123–224,716

https://doi.org/10.1561/2200000035.717
[25] P. Stumm and A. Walther, New algorithms for optimal online checkpointing, SIAM Journal on Scientific Computing,718

32 (2010), pp. 836–854, https://doi.org/10.1137/080742439.719
[26] Y. Sun, Y. Guo, C. Luo, J. A. Tropp, and M. Udell, Low-rank tucker approximation of a tensor from streaming data,720

arXiv preprint arXiv:1904.10951, (2019), https://arxiv.org/abs/1904.10951.721
[27] Y. Sun, Y. Guo, J. A. Tropp, and M. Udell, Tensor random projection for low memory dimension reduction,722

in NeurIPS Workshop on Relational Representation Learning, 2018, https://r2learning.github.io/assets/papers/723
CameraReadySubmission%2041.pdf.724

[28] A. Tarantola, Linearized inversion of seismic reflection data, Geophysical Prospecting, 32 (1984), pp. 998–1015, https:725
//doi.org/10.1111/j.1365-2478.1984.tb00751.x.726

[29] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Fixed-rank approximation of a positive-semidefinite matrix727
from streaming data, in Adv. Neural Information Processing Systems 30 (NIPS), Long Beach, Dec. 2017.728

[30] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Practical sketching algorithms for low-rank matrix approxi-729
mation, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1454–1485, https://doi.org/10.1137/17M1111590.730

[31] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Streaming low-rank matrix approximation with an application731
to scientific simulation, SIAM Journal on Scientific Computing, (2019), https://arxiv.org/abs/1902.08651.732

[32] Q. Wang, P. Moin, and G. Iaccarino, Minimal repetition dynamic checkpointing algorithm for unsteady adjoint calcu-733
lation, SIAM Journal on Scientific Computing, 31 (2009), pp. 2549–2567, https://doi.org/10.1137/080727890.734

[33] M. Warner and L. Guasch, Adaptive waveform inversion: Theory, GEOPHYSICS, 81 (2016), pp. R429–R445, https:735
//doi.org/10.1190/geo2015-0387.1.736

[34] D. P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theor. Comput. Sci., 10 (2014),737
pp. iv+157, https://doi.org/10.1561/0400000060.738

[35] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized algorithm for the approximation of matrices,739
Appl. Comput. Harmon. Anal., 25 (2008), pp. 335–366, https://doi.org/10.1016/j.acha.2007.12.002.740

[36] M. J. Zahr, K. T. Carlberg, and D. P. Kouri, An efficient, globally convergent method for optimization under741
uncertainty using adaptive model reduction and sparse grids, arXiv e-prints, (2018), https://arxiv.org/abs/1811.742
00177.743

23

This manuscript is for review purposes only.

https://doi.org/10.1007/978-1-4939-8636-1_6
https://doi.org/10.1007/978-1-4939-8636-1_6
https://doi.org/10.1017/S002211209700815X
https://doi.org/10.1561/2200000035
https://doi.org/10.1137/080742439
https://arxiv.org/abs/1904.10951
https://r2learning.github.io/assets/papers/CameraReadySubmission%2041.pdf
https://r2learning.github.io/assets/papers/CameraReadySubmission%2041.pdf
https://r2learning.github.io/assets/papers/CameraReadySubmission%2041.pdf
https://doi.org/10.1111/j.1365-2478.1984.tb00751.x
https://doi.org/10.1111/j.1365-2478.1984.tb00751.x
https://doi.org/10.1111/j.1365-2478.1984.tb00751.x
https://doi.org/10.1137/17M1111590
https://arxiv.org/abs/1902.08651
https://doi.org/10.1137/080727890
https://doi.org/10.1190/geo2015-0387.1
https://doi.org/10.1190/geo2015-0387.1
https://doi.org/10.1190/geo2015-0387.1
https://doi.org/10.1561/0400000060
https://doi.org/10.1016/j.acha.2007.12.002
https://arxiv.org/abs/1811.00177
https://arxiv.org/abs/1811.00177
https://arxiv.org/abs/1811.00177

Appendix A. Sketching Routines. In this appendix, we provide pseudo-code for the sketching744

algorithms described throughout the paper. In particular, we first present the abstract sketch class and then745

describe the methods required to apply the sketch-based approximation of the Hessian to a vector.746

Algorithm A.1 Sketch class and methods

1: class Sketch
2: member variables k,s sketch parameters
3: member variables Υ,Ω,Φ,Ψ random test matrices
4: member variables X,Y,Z sketch matrices
5: member variables Q,W low rank factors
6: member variables rec reconstruction flag
7: function Sketch(M , N , rank = r) Sketch class constructor
8: Initialize!(M , N , rank = r)

9: function Initialize!(M , N , rank = r) Sketch class initializer
10: reconstructed ← FALSE.
11: k ← 2r + 1, s← 2k + 1
12: Υ← randn(k,M), Ω← randn(k,N) Test matrix for range and co-range
13: Φ← randn(s,M) ,Ψ← randn(s,N) Test matrices for core
14: X← zeros(k,N), Y ← zeros(M,k) Approximation sketch of zero matrix
15: Z← zeros(s, s)
16: Q← zeros(M,k), W← zeros(k,N) Low rank factors

17: function ColumnUpdate!(h, n, θ = 1.0, η = 1.0) Update sketch matrices
18: X← θX + η(Υh)e∗n
19: Y ← θY + ηh(Ωen)∗

20: Z← θZ + η(Φh)(Ψen)∗

21: function Reconstruct!() Reconstruct low rank factors
22: (Q,R2) ← qr(Y, 0)
23: (P,R1) ← qr(X∗, 0)
24: C← ((ΦQ)\Z)/((ΨP)∗)
25: W← CP∗

26: reconstructed ← TRUE
27: function Column(j) Reconstruct a single column
28: if reconstructed then
29: return Q ·W[:, j]

Algorithm A.2 Compute residual norm for control Z.

Input: A control iterate Z ∈ Rm×N and sketch object {U}r for state U ∈ RMN×1

Output: Residual norm : rnorm = ‖c(Û,Z)‖2
Storage: O(r(M +N))

1: function ResidualNorm({U}r, Z)
2: (uold, rnorm)← ({U}r.Column(N), 0)
3: for n← N to 1 do
4: unew ← {U}r.Column(n− 1)

5: rnorm← rnorm + ‖cn(unew,uold, zn)‖2
6: uold ← unew

7: return rnorm

24

This manuscript is for review purposes only.

Algorithm A.3 Solve adjoint equation.

Input: Control Z ∈ Rm×N and sketch objects:
{U}r for state U ∈ RM×N

{Λ}r for adjoint Λ ∈ RM×N

Output: Updated adjoint sketch object {Λ}r
Storage: O((r1 + r2)(M +N)) for adjoint rank parameter r2 ≤ min{M,N}

1: function SolveAdjoint!({Λ}r, {U}r, Z)
2: (ucurr,unext)← ({U}r.Column(N − 1), {U}r.Column(N))
3: Solve the adjoint equation at index N for λnext,

d2cN (ucurr,unext, zN)λnext = d2fN (ucurr,unext, zN)

4: {Λ}r.ColumnUpdate!(λnext, N)
5: for n = N − 1 to 1 do
6: if n = 1 then
7: uprev ← u0

8: else
9: uprev ← {U}r.Column(n− 1)

10: Solve the adjoint equation at index n for λcurr,

d2cn(uprev,ucurr, zn)λcurr = d2fn(uprev,ucurr, zn) + d1fn+1(ucurr,unext, zn+1)

− d1cn+1(ucurr,unext, zn+1)λnext

11: {Λ}r.ColumnUpdate!(λcurr, n)
12: (unext,ucurr,λnext)← (ucurr,uprev,λcurr)

Algorithm A.4 Solve state sensitivity equation.

Input: Control Z ∈ Rm×N , direction vector V ∈ Rm×N , and sketch objects:
{U}r for state U ∈ RM×N

{W}r for state sensitivity W ∈ RM×N

Output: Updated state sensitivity sketch object {W}r
Storage: O((r1 + r3)(M +N)) for state sensitivity rank parameter r3 ≤ min{M,N}

1: function SolveStateSensitivity!({W}r,{U}r, Z, V)
2: for n = 1 to N do
3: if n = 1 then
4: (uprev,ucurr,wprev)← (u0, {U}r.Column(1),0)
5: else
6: (uprev,ucurr,wprev)← (ucurr, {U}r.Column(n),wcurr)

7: Solve the state sensitivity equation at index n for wcurr

d2cn(uprev,ucurr, zn)wcurr = d3cn(uprev,ucurr, zn)vn − d1cn(uprev,ucurr, zn)wprev

8: {W}r.ColumnUpdate!(wcurr, n)

25

This manuscript is for review purposes only.

Algorithm A.5 Apply fixed-rank Hessian approximation to a vector.

Input: Control Z ∈ Rm×N , sketch object for state {U}r, direction V ∈ Rm×N ,
and rank parameters r2, r3 ≤ min{M,N}

Output: Application of approximate Hessian to vector V, H̃ ≈ ∇2f(Z)V
Storage: O((r1 + r2 + r3)(M +N))

1: function ApplyFixedRankHessian(Z , {U}r, V, r2, r3)
2: {Λ}r ← Sketch(M,N, rank = r2) Initialize adjoint sketch object
3: SolveAdjoint!({Λ}r, {U}r,Z) Solve adjoint equation
4: {Λ}r.Reconstruct!() Get low-rank factors for adjoint
5: {W}r ← Sketch(M,N, rank = r3) Initialize state sensitivity sketch object
6: SolveStateSensitivity!({W}r, {U}r,Z,V) Solve state sensitivity equation
7: {W}r.Reconstruct!() Get low-rank factors for state sensitivity
8: H̃← ApplyHessian({W}r, {Λ}r, {U}r,Z,V) Apply Hessian to V
9: return H̃

Algorithm A.6 Apply Hessian to a vector using sketching.

Input: Control Z ∈ Rm×N , direction vector V ∈ Rm×N , and sketch objects:
{U}r for state U ∈ RM×N

{Λ}r for adjoint Λ ∈ RM×N

{W}r for state sensitivity W ∈ RM×N

Output: Application of approximate Hessian to vector V, H ≈ ∇2f(Z)V
Storage: O((r1 + r2 + r3)(M +N))

1: function ApplyHessian({W}r,{Λ}r,{U}r, Z(k), V)
2: (ucurr,unext,λnext)← ({U}r.Column(N − 1), {U}r.Column(N), {Λ}r.Column(N))
3: (wcurr,wnext)← ({W}r.Column(N − 1), {W}r.Column(N))
4: Solve the adjoint sensitivity equation at index N for pnext,

(d2cN (ucurr,unext, zN))∗pnext = −d2,3LN (ucurr,unext, zN ,λnext)vN

+ d2,2LN (ucurr,unext, zN ,λnext)wnext + d2,1LN (ucurr,unext, zN ,λnext)wcurr

5: Apply Hessian of Lagrangian at index N ,

hN = d3,3LN (ucurr,unext, zn,λnext)vn − d3,1LN (ucurr,unext, zn,λnext)wcurr

− d3,2LN (ucurr,unext, zn,λnext)wnext + (d3cN (ucurr,unext, zN))∗pnext

6: for n = N − 1 to 1 do
7: Solve the adjoint sensitivity equation at index n for pcurr,

(d2cn(uprev,ucurr, zn))∗pcurr = −(d1cn+1(ucurr,unext, zn))∗pnext

− d2,3Ln(uprev,ucurr, zn,λcurr)vn − d1,3Ln+1(ucurr,unext, zn,λnext)vn+1

+ d2,2Ln(uprev,ucurr, zn,λcurr)wcurr + d1,2Ln+1(ucurr,unext, zn,λnext)wnext

+ d2,1Ln(uprev,ucurr, zn,λcurr)wprev + d1,1Ln+1(ucurr,unext, zn,λnext)wcurr.

8: Apply Hessian of Lagrangian at index n

hn ← d3,3Ln(uprev,ucurr, zn,λcurr)vn − d3,1Ln(uprev,ucurr, zn,λcurr)wprev

− d3,2Ln(uprev,ucurr, zn,λcurr)wcurr + (d3cn(uprev,ucurr, zn))∗pcurr

9: (unext,ucurr,λnext)← (ucurr,uprev,λcurr)
10: (wnext,wcurr,pnext)← (wcurr,wprev,pcurr)

11: return H = [h1, . . . ,hN]

26

This manuscript is for review purposes only.

	Introduction
	Memory versus computation: trade-offs
	Randomized sketching for dynamic optimization
	Outline

	Problem formulation
	Assumptions and the reduced problem
	Gradient computation and adjoints

	Low-memory matrix approximation
	Reconstruction

	Randomized sketching for dynamic optimization
	Computing first- and second-order information with limited memory
	Solving the state equation
	Computing an approximate gradient from the sketched state

	Regularity assumptions
	A fixed-rank approach
	An adaptive rank approach
	Choosing the rank to guarantee convergence
	Sketched trust-region algorithm

	Optimal control of linear parabolic PDEs
	Discretization
	Stability estimates

	Numerical examples
	Optimal control of an advection-reaction-diffusion equation
	Optimal control of flow past a cylinder

	References
	Appendix A. Sketching Routines

